3.3.97 \(\int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [297]

3.3.97.1 Optimal result
3.3.97.2 Mathematica [A] (verified)
3.3.97.3 Rubi [A] (warning: unable to verify)
3.3.97.4 Maple [B] (warning: unable to verify)
3.3.97.5 Fricas [A] (verification not implemented)
3.3.97.6 Sympy [F]
3.3.97.7 Maxima [F]
3.3.97.8 Giac [F(-2)]
3.3.97.9 Mupad [B] (verification not implemented)

3.3.97.1 Optimal result

Integrand size = 25, antiderivative size = 115 \[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {(2 a-b) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{2 \sqrt {a} f}-\frac {\sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f}-\frac {\cot ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f} \]

output
1/2*(2*a-b)*arctanh((a+b*tan(f*x+e)^2)^(1/2)/a^(1/2))/f/a^(1/2)-arctanh((a 
+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))*(a-b)^(1/2)/f-1/2*cot(f*x+e)^2*(a+b*ta 
n(f*x+e)^2)^(1/2)/f
 
3.3.97.2 Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00 \[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {(2 a-b) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )-\sqrt {a} \left (2 \sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )+\cot ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )}{2 \sqrt {a} f} \]

input
Integrate[Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
((2*a - b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]] - Sqrt[a]*(2*Sqrt[a 
 - b]*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]] + Cot[e + f*x]^2*Sqr 
t[a + b*Tan[e + f*x]^2]))/(2*Sqrt[a]*f)
 
3.3.97.3 Rubi [A] (warning: unable to verify)

Time = 0.32 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4153, 354, 110, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (e+f x)^2}}{\tan (e+f x)^3}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\cot ^3(e+f x) \sqrt {b \tan ^2(e+f x)+a}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \sqrt {b \tan ^2(e+f x)+a}}{\tan ^2(e+f x)+1}d\tan ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 110

\(\displaystyle \frac {\int -\frac {\cot (e+f x) \left (b \tan ^2(e+f x)+2 a-b\right )}{2 \left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\cot (e+f x) \left (-\sqrt {a+b \tan ^2(e+f x)}\right )-\frac {1}{2} \int \frac {\cot (e+f x) \left (b \tan ^2(e+f x)+2 a-b\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {\frac {1}{2} \left (2 (a-b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)-(2 a-b) \int \frac {\cot (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}d\tan ^2(e+f x)\right )-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {1}{2} \left (\frac {4 (a-b) \int \frac {1}{\frac {\tan ^4(e+f x)}{b}-\frac {a}{b}+1}d\sqrt {b \tan ^2(e+f x)+a}}{b}-\frac {2 (2 a-b) \int \frac {1}{\frac {\tan ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \tan ^2(e+f x)+a}}{b}\right )-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {1}{2} \left (\frac {2 (2 a-b) \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a}}-4 \sqrt {a-b} \text {arctanh}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )\right )-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\)

input
Int[Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(((2*(2*a - b)*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]])/Sqrt[a] - 4*Sq 
rt[a - b]*ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]])/2 - Cot[e + f*x 
]*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)
 

3.3.97.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 110
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f))   Int[(a + b*x)^(m + 1) 
*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + 
p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && Gt 
Q[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, 
 m + n])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.3.97.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1621\) vs. \(2(97)=194\).

Time = 1.22 (sec) , antiderivative size = 1622, normalized size of antiderivative = 14.10

method result size
default \(\text {Expression too large to display}\) \(1622\)

input
int(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/f/a^(5/2)/(a-b)^(1/2)*((a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x 
+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)/((-cos(f*x+e)+ 
1)^2*csc(f*x+e)^2-1)^2)^(1/2)*((-cos(f*x+e)+1)^2*csc(f*x+e)^2-1)*(-a^(5/2) 
*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b* 
(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*(a-b)^(1/2)*(-cos(f*x+e)+1)^4*csc( 
f*x+e)^4+8*ln(4*(-a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+b*(-cos(f*x+e)+1)^2*csc 
(f*x+e)^2+(a-b)^(1/2)*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1 
)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)+a-b)/((-cos(f 
*x+e)+1)^2*csc(f*x+e)^2+1))*a^(7/2)*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a*(-co 
s(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f* 
x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(5/2)*(-cos(f*x+e)+1)^2*(a-b)^(1/2)*csc( 
f*x+e)^2-8*ln(4*(-a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+b*(-cos(f*x+e)+1)^2*csc 
(f*x+e)^2+(a-b)^(1/2)*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1 
)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)+a-b)/((-cos(f 
*x+e)+1)^2*csc(f*x+e)^2+1))*a^(5/2)*(-cos(f*x+e)+1)^2*b*csc(f*x+e)^2-4*a^( 
3/2)*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+ 
4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*(a-b)^(1/2)*b*(-cos(f*x+e)+1)^ 
2*csc(f*x+e)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc 
(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(3/2)*a^(3/2)*(a-b)^(1/2)+ 
4*ln((a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^...
 
3.3.97.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 592, normalized size of antiderivative = 5.15 \[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\left [\frac {2 \, \sqrt {a - b} a \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} - {\left (2 \, a - b\right )} \sqrt {a} \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{4 \, a f \tan \left (f x + e\right )^{2}}, -\frac {4 \, a \sqrt {-a + b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{a - b}\right ) \tan \left (f x + e\right )^{2} + {\left (2 \, a - b\right )} \sqrt {a} \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a} + 2 \, a}{\tan \left (f x + e\right )^{2}}\right ) \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{4 \, a f \tan \left (f x + e\right )^{2}}, -\frac {\sqrt {-a} {\left (2 \, a - b\right )} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a}}{a}\right ) \tan \left (f x + e\right )^{2} - \sqrt {a - b} a \log \left (\frac {b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 2 \, a - b}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{2} + \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{2 \, a f \tan \left (f x + e\right )^{2}}, -\frac {\sqrt {-a} {\left (2 \, a - b\right )} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a}}{a}\right ) \tan \left (f x + e\right )^{2} + 2 \, a \sqrt {-a + b} \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{a - b}\right ) \tan \left (f x + e\right )^{2} + \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{2 \, a f \tan \left (f x + e\right )^{2}}\right ] \]

input
integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[1/4*(2*sqrt(a - b)*a*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a) 
*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1))*tan(f*x + e)^2 - (2*a - b)*s 
qrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a) 
/tan(f*x + e)^2)*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*a)/(a*f*tan 
(f*x + e)^2), -1/4*(4*a*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sq 
rt(-a + b)/(a - b))*tan(f*x + e)^2 + (2*a - b)*sqrt(a)*log((b*tan(f*x + e) 
^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2)*tan(f*x + 
 e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*a)/(a*f*tan(f*x + e)^2), -1/2*(sqrt(- 
a)*(2*a - b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a)*tan(f*x + e)^2 
- sqrt(a - b)*a*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt( 
a - b) + 2*a - b)/(tan(f*x + e)^2 + 1))*tan(f*x + e)^2 + sqrt(b*tan(f*x + 
e)^2 + a)*a)/(a*f*tan(f*x + e)^2), -1/2*(sqrt(-a)*(2*a - b)*arctan(sqrt(b* 
tan(f*x + e)^2 + a)*sqrt(-a)/a)*tan(f*x + e)^2 + 2*a*sqrt(-a + b)*arctan(- 
sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(a - b))*tan(f*x + e)^2 + sqrt(b*t 
an(f*x + e)^2 + a)*a)/(a*f*tan(f*x + e)^2)]
 
3.3.97.6 Sympy [F]

\[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \cot ^{3}{\left (e + f x \right )}\, dx \]

input
integrate(cot(f*x+e)**3*(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(e + f*x)**2)*cot(e + f*x)**3, x)
 
3.3.97.7 Maxima [F]

\[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{3} \,d x } \]

input
integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tan(f*x + e)^2 + a)*cot(f*x + e)^3, x)
 
3.3.97.8 Giac [F(-2)]

Exception generated. \[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(f*x+e)^3*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.3.97.9 Mupad [B] (verification not implemented)

Time = 10.78 (sec) , antiderivative size = 238, normalized size of antiderivative = 2.07 \[ \int \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\mathrm {atanh}\left (\frac {\sqrt {a}\,b^4\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{2\,\left (\frac {a\,b^4}{2}-\frac {3\,b^5}{4}+\frac {b^6}{4\,a}\right )}-\frac {3\,b^5\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{4\,\sqrt {a}\,\left (\frac {a\,b^4}{2}-\frac {3\,b^5}{4}+\frac {b^6}{4\,a}\right )}+\frac {b^6\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{4\,a^{3/2}\,\left (\frac {a\,b^4}{2}-\frac {3\,b^5}{4}+\frac {b^6}{4\,a}\right )}\right )\,\left (2\,a-b\right )}{2\,\sqrt {a}\,f}-\frac {\mathrm {atanh}\left (\frac {b^4\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}\,\sqrt {a-b}}{2\,\left (\frac {a\,b^4}{2}-\frac {b^5}{2}\right )}\right )\,\sqrt {a-b}}{f}-\frac {b\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{2\,\left (f\,\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )-a\,f\right )} \]

input
int(cot(e + f*x)^3*(a + b*tan(e + f*x)^2)^(1/2),x)
 
output
(atanh((a^(1/2)*b^4*(a + b*tan(e + f*x)^2)^(1/2))/(2*((a*b^4)/2 - (3*b^5)/ 
4 + b^6/(4*a))) - (3*b^5*(a + b*tan(e + f*x)^2)^(1/2))/(4*a^(1/2)*((a*b^4) 
/2 - (3*b^5)/4 + b^6/(4*a))) + (b^6*(a + b*tan(e + f*x)^2)^(1/2))/(4*a^(3/ 
2)*((a*b^4)/2 - (3*b^5)/4 + b^6/(4*a))))*(2*a - b))/(2*a^(1/2)*f) - (atanh 
((b^4*(a + b*tan(e + f*x)^2)^(1/2)*(a - b)^(1/2))/(2*((a*b^4)/2 - b^5/2))) 
*(a - b)^(1/2))/f - (b*(a + b*tan(e + f*x)^2)^(1/2))/(2*(f*(a + b*tan(e + 
f*x)^2) - a*f))